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Abstract 

Petascale computers allow scientists and engineers not only to 
address old problems better, but also to consider new methods and 
new problems. We report here on work that both applies new 
methods and tackles new problems in the area of structural biology. 
The project combines an efficient protein structure prediction 
algorithm implemented in the Open Protein System (OOPS) system 
with the Swift parallel scripting system to enable the rapid and 
flexible composition of OOPS components into parallel program, 
and the high-performance execution of these programs on petascale 
computers. The result is a powerful computational laboratory 
environment for predicting protein secondary and tertiary structure, 
for further testing and refining OOPS, and for performing training 
and scaling tests that enable structure simulation to run on a wide 
variety of computing architectures with high efficiency. Comparison 
of before and after experiences within two laboratories at the 
University of Chicago shows that this use of scripting enables 
achieving significant improvements in throughput, time-to-solution, 
and scientific productivity. For example, an undergraduate has 
recently been able to define and execute new protein folding 
simulations on thousands of processors. This approach both 
enables new applications for petascale computers, and provides an 
avenue for many more researchers to participate in the 
computational science aspects of structure prediction. 

1 INTRODUCTION 
To understand a living cell at the microscopic level, we must 
identify, characterize, and comprehend detailed interactions among 
sub-components. Decoding the genome has already transformed 
biology and medicine but is only the starting point of our research 
and methods, whose long-term goal is to begin with a set of genes 
identified in a biological process, provide the structure and function 
of the proteins, and identify their interactions and connections in 
signaling pathways. Success in this endeavor will lay the foundation 
for a new generation of therapeutics and drug design. 

This research agenda drives our interest in reliable, high-throughput 
methods for predicting protein structure from sequence and 
recognize docking partners. The availability of such methods will 
create a comprehensive resource for understanding these 
interactions and will eventually replace slower, empirical 
determinations. To this end, we have developed and continue to use, 
support, and enhance the Open Protein Simulator (OOPS), a suite of 
C++ programs and libraries for predicting the structure and 
interaction of proteins and other large molecules [10]. OOPS has 
proven successful, through international challenges, such as 
CASP8, in predicting the structure of moderate size proteins [14]. 

As OOPS becomes more accurate and efficient, a number of related 
computational challenges emerge in our desire to tackle proteins of 
increasing size because current prediction methods have limited 
accuracy even for proteins on the order of 100 residues when 
homology-based information is minimal. To predict the structures 
of larger and multi-domain proteins, statistical sampling becomes a 
limiting factor, and thus we require significantly more computing 
resources. 

Second, we wish to generate more predictions, of higher, and 
known, quality, faster, and with less effort required of the users to 
enable greater focus on the primary intellectual challenges and less 
on the distracting but necessary efforts involved in performing 
increasingly parallel, large scale computations. This goal requires 
both more computing capacity and the ability to specify and execute 
new OOPS applications rapidly and easily. 

Third, progress towards the first two challenges requires the ability 
to use a wider range of more powerful computers and to reduce 
barriers to using new computing systems. 

In pursuit of these goals, we have sought to create a  “protein 
prediction laboratory” enabling the rapid specification of complex 
protein prediction applications based on OOPS software. To this 
end, the cumbersome, inflexible, and manually intensive collection 
of ad hoc shell and Python scripts that had previously been used to 
drive OOPS have been replaced by the Swift [1] parallel scripting 
system. Swift provides a high-level syntax that provides for well-
structured, abstract, location-independent scripts. The Swift runtime 
system also automates parallelization, data management, and error 
recovery, and supports execution on a wide variety of computer 
systems. This approach allows great flexibility in composing 
existing programs to address new requirements, to explore 
algorithmic variations, and to implement entirely new applications, 
such as new folding and docking algorithms, and replica exchange 
simulations with multiple order parameters. 

The present status report on our progress towards these goals 
describes the algorithms used by OOPS (Section 2), their 
computational structure and costs (Section 3), and the parallel 
scripting approach we employed to extend the power of OOPS 
(Section 4). Finally, we present in Section 5 results obtained by co-
author G. Hocky, an undergraduate student at the University of 
Chicago, who sought to apply the OOPS Swift-based scripting 
framework to a range of protein structure prediction problems. 
These results are anecdotal, but suggestive of the power of the 
approach. 
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2 PROTEIN STRUCTURE PREDICTION 
ALGORITHM 

The Open Protein Simulator (OOPS) is a set of open source 
applications for fast simulation of protein folding, docking and 
refinement. It uses the C++ protein library PL [3] for representing, 
moving, and calculating the energy of protein structures, and 
provides a set of useful analysis tools for evaluating the quality of 
predicted models. OOPS and its component ItFix algorithm have 
proven successful at predicting the structure of moderate-sized 
proteins [13].  

The iterative fixing (ItFix) protein structure determination algorithm 
used within OOPS takes as input a protein sequence, an initial 
secondary structure, a starting annealing temperature, and other 
parameters. If successful, it produces a protein structure as output. 

Figure 1 shows the basic structure of the ItFix algorithm, which 
consists of multiple rounds. (The number of rounds is typically 
limited by a maximum and a convergence test.) At each round, it 
performs between 100 and 1000 independent, randomly seeded 
Monte-Carlo-based simulated annealing (MCSA) computations 
[10]. Then, it gathers statistical data about that round, specifically 
on the average origins or assignments of the secondary structures at 
each position in the sequence. Sometimes this analysis involves 
clustering of structures through various techniques. It then 
determines whether or not to stop sampling angles from certain 
secondary structure types at those positions, checks for convergence 
and, if convergence has not occurred, launches the next round with 
this information as a new input file. Additionally, at each analysis 
step, various plots are created from the output data, including 
average 3D atomic contact maps (and movies), RMSD (3D position 
accuracy) versus energy plots, and secondary structure prediction 
accuracy. 

The MCSA application called by ItFix consists of a simulated 
annealing (SA) loop that iterates until it “cools” sufficiently [10]. At 
each iteration, it rotates the φ/ψ backbone torsional angles in 
accordance with well-understood physical constraints, seeking 
moves that produce lower energy and more native-like structures. 
Thus, each iteration comprises first a move() and then the 
calculation of the energy of the new configuration, followed by 
acceptance or rejection of the move based on energy and a 
temperature-weighted probablity of accepting a higher-energy 
move. 

ItFix and OOPS have unique characteristics that make them well-
suited for high-throughput and rapid-response structure prediction 
and related operations such as simulating the docking 
configurations of large biomolecules. ItFix incorporates basic 
chemical principles and mimics a folding pathway to restrict its 
search space. It employs a highly conditional reduced molecular 
representation [16], which enables a broader and faster search [10]. 
In contrast, most other methods include all the atoms and 
consequently expend much computation time searching through 
side chain space. Most other algorithms also rely heavily on known 
structures or fragments (homologies, templates, etc.) [8, 31]. Their 
success rapidly diminishes as the amount of known information 
decreases.  

3 COMPUTATIONAL CHALLENGES IN 
PROTEIN STRUCTURE PREDICTION 

The ItFix folding algorithm has reduced significantly the time 
required to predict a protein from sequence, relative to other 

methods of similar quality. However, in its current implementation, 
the algorithm still requires ~1000 CPU hours on a modern 
microprocessor for a medium-sized protein: more than a month. 

Fortunately, the hierarchical structure in Figure 1 suggests obvious 
opportunities for parallel execution. First, the multiple independent 
invocations of MCSA can be executed in parallel; as each MCSA 
invocation runs for 0.5 to 3.0 hours, has a small memory footprint 
(10s of megabytes), and outputs small text files (compressible to < 
1MB per MCSA simulation), this strategy is quite straightforward. 

Second, it may be possible to exploit parallelism within MCSA. 
Exploiting for now only the former opportunity, we have produced 
a code that can compute a single structure in a day on a 150-CPU 
cluster. 

While we plan to consider parallelization of MCSA in the future, 
that work has not been a priority because our observations of how 
ItFix and OOPS used in practice within the Freed and Sosnick labs 
suggest different challenges: 

• Researchers often want to invoke ItFix many times at once for 
different proteins. Thus, even without parallelization of 
MCSA, we see large runs, involving hundreds of thousands of 
independent activities, with associated procedural challenges 
in terms of bookkeeping, error detection, restarting, and so 
forth. (See Figure X.) 

• The ItFix algorithm has several free parameters that are 
currently trained by chemical intuition and repeated trials. In 
order to best understand performance, researchers often want 
to run extensive benchmarks to evaluate algorithmic 
improvements. Again, the result is large runs involving many 
invocations of MCSA and other procedures. 

• Researchers often make changes to the computational 
structure—not at the lowest level of the MCSA application, 
but to things like convergence criteria. 

• Researchers also experiment with new applications of the 
OOPS framework, for example to crystal structure refinement 
and studies of biomolecular interactions. These applications do 

main(protein, secStr) 
  ItFix(protein, nRounds=10, roundSize=300, secStr) 
 
ItFix(protein, nRounds, roundSize, secStr) 
   roundNum=1 
   while not converged and roundNum < nRounds 
      foreach j in 1..roundSize 
         models[j], structs[j] = Mcsa(p, secStr) 
      newSS = analyze(models, structs) 
      converged = checkConvergence(newSecStr, secStr) 
      s=newSecStr 
      roundNum++ 
 
MCSA(protein, secStr)  
   initialConf=genRandConf(protein, secStr) 
   E = energy(initialConf.model) 
   temp, stepsToUpdate, moveSet = GetInitialValues() 
   while (not converged) 
      position=chooseRandPosition() 
      model = move( position, moveSet ) 
      newE = energy(model) 
      model, E = accept_or_reject(E, newE,t) 
      if nstep mod steps == 0 then reduce(t) 
      nsteps++ 
   return model, struct 
 

Figure 1: The ItFix folding algorithm  
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not change the basic MCSA building block, but do again 
involve the specification of new high-level structure. 

• Because computing demands always seem to exceed available 
resources, researchers frequently seek to make use of multiple 
computers, including local clusters and computers at NSF and 
DOE centers. 

These observations on how ItFix and OOPS are used suggest a need 
for mechanisms that allow for concise, readable specification of 
high-level structure that exposes opportunities for parallel 
execution; the robust management of large number of tasks; and the 
convenient dispatch of computation to multiple parallel computers, 
both local and remote. 

These considerations motivated our exploration of the use of the 
Swift parallel scripting system within OOPS. 

 
Figure 2: OOPS ItFix data flow diagram, showing algorithm 
applied to multiple proteins concurrently, in multiple rounds. 
 

4 PARALLEL PREDICTION SCRIPTING 
Swift [29] comprises: 

1. a high-level, functional scripting language (“SwiftScript”), 
designed for expressing computations that invoke executable 
programs, with a dataflow model used to ensure that program 
invocations (“tasks”) are executed only when their input data is 
available;  

2. a data model that allows for the mapping of file system 
structures (individual files, directories, etc.) into Swift 
language variables; and 

3. a runtime system to manage the scheduling of tasks for 
execution, the dispatch of executable tasks to parallel 
computers, and the movement of data consumed and produced 
by those tasks. 

 
Figure 2 illustrates some basic Swift constructs. In brief: 

•  (L1-3) Defines an interface to an application program, 
predict_structure. This interface maps from typed 
Swift variables to command-line program syntax. It expects a 
protein sequence specified in FASTA format and returns a 
structure prediction in the form of a “trajectory” file in our 
“PDT” format. 

•  (L5-9) Invokes the procedure predict (and thus the 
predict_structure program) in parallel, for each file 
listed in the command line argument “proteins.” 

Swift’s dataflow model means that the multiple invocations of 
predict can run concurrently, as none is dependent on data 
produced by another. Swift’s runtime system handles the dispatch 
of individual predict calls to an available computer, and the 
movement of the associated data to and from those computers. 
Thus, we are able in just eight lines to describe a potentially large 
amount of computing. 

The Swift runtime system can deal with computations that involve 
many concurrent activities. By using two-level scheduling methods, 
as implemented for example in Falkon [24, 25], it has executed 
computations involving hundreds of thousands of tasks on 
supercomputers with tens of thousands of processors. (These 
methods first deploy task executors onto nodes and then stream 
tasks to those executors.) The Swift runtime system can also 
dispatch tasks to multiple computers, using Globus mechanisms 
[17] to overcome inevitable heterogeneities in authentication, job 
submission, and data movement methods. Swift implements various 
heuristics to decide where to send which task, and when. 

When we first discussed combining OOPS with Swift, we sketched 
out simple pseudo-code examples, similar to Figure 1, of how we 
would use Swift programs to combine OOPS functions into high-
performance applications. Our original conception has stood the test 
of time. While the integration of the OOPS framework with Swift 
demanded some extra initial development time, this investment has 
paid off. We have more concise and manageable programs; can run 
complex computations more easily and reliably; and are able to run 
our programs across many sites without modification. 

To illustrate how we use Swift in OOPS, we present a simplified 
version of the basic ItFix program structure. The complete currently 
executing Swift script is available online [2]. 

We leverage Swift data typing and mapping [20] to abstract input 
and outputs, group related items in structures, detect type errors, and 
map the simple logical structure to the specific data layout that we 
want to maintain in our archival storage repository. We first declare 
some useful atomic types to be simple files: for example, Fasta for 
the sequence being folded, and PDB, the known 3D structure, when 
available, for accuracy comparison. (Other such simple types are 
elided). Then we define some compound types, which as in other 
languages, are used to organize multiple related values. 

1. app (PDT structure) predict(Fasta protein) { 
2.     predict_structure @protein @structure; 
3. } 
4.  
5. foreach pfile, i in @arg("proteins") { 
6.    Fasta protein <pfile>; 
7.    PDT structure[]; 
8.    structure[i] = predict(protein); 
9. } 
 

Figure 3: A simple Swift example 
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1. type Fasta; 
2. type PDB; 
3. ... 
4.  
5. type MCSAIn { 
6.   Fasta fasta; 
7.   PDB pdb; 
8.   SecSeq secseq; 
9. } 
10.  
11. type MCSAOut { 
12.   OOPSSecStr SecStr; 
13.   OOPSLog log; 
14.   OOPSEnergy Energy; 
15.   OOPSpdt pdt; 
16.   OOPSrmsd rmsd;  
17.   OOPSLibrary Library; 
18. } 

 
We use app procedures to define Swift interfaces to application 
codes. For example, the Swift procedure mcsa defines an interface 
to the oops_mcsa program (L19). Note how the procedure 
extracts components from the Swift procedure arguments and uses 
them to construct the arguments to oops_mcsa (L20). 

 
19. app (MCSAOut out) mcsa (MCSAIn i, SecSeq secseq,  

                  int jobnum, string cfgParams[])  
{ 

20.    oops_mcsa @i.fasta @secseq @i.pdb @out.pdt  
       @out.rmsd jobnum cfgParams stdout=@out.log; 

21. } 
 

We often also find it useful to define Swift interfaces to small utility 
functions. For example, in the following we use the Unix sed 
program to replace the values of science parameters  in OOPS run 
configuration  files. Any of the approximately 50 scientific 
parameters in about 8 configuration files can be dynamically set, 
and used in a parameter sweep, in this manner. In L22-24 below, we 
set parameters values that control the simulated annealing 
temperature ranges and descent rates. 
22. app (file oParams) setTemps (file inParams, string  

                             start, string update) 
{ 

23.    sed "-e" @strcat("s/@DIT@/",start,"/") "-e"  
       @strcat("s/@TUI@/",update,"/") 
       @inParams stdout=@oParams; 

24. } 
 

Next, we define our parallel application logic. First, we specify how 
a single ItFix round is performed, via multiple concurrent calls to 
mcsa.  The procedure singleRound (L25) sets various science 
configuration parameters (L28-29) and then uses a foreach 
statement (L30) to make the multiple calls to mcsa, accumulating 
the outputs in the array out.  
25. (MCSAOut out[]) singleRound 

(string protein, MCSAIn mcsaIn, SecSeq secSeq, 
int round, int nsim, string startTemp, 
string tempUpdate) 

26. { 
  file inParams <@arg("params")>; 

27.   file editedParams = 
     setTemps(inParams, startTemp, tempUpdate);   

28.   string config [] = readData(editedParams);                       
29.  
30.   foreach sim in [0 : (nsim-1)] { 
31.     out[sim] = 

        mcsa(mcsaIn, secseq, sim, config);˙ 
32.    } 
33. } 
34.  

The procedure ItFix (L35) implements the ItFix algorithm, 
calling singleRound repeatedly (and serially) (L48) until either 
convergence is detected (L51-52) or the specified rounds limit is 
reached (L52). 
35. ItFix(string protein, int nsim, int maxrounds,  

      string startTemp, string tempUpdate) 
36. { 

  OOPSIn oopsin <ext; exec="OOPSIn.map.sh",    
                      i="input", p=protein>; 

37.  
38.   string outdir = @arg("outdir"); 
39.   OOPSOut result[][] <ext; 

          exec="SecSamplerOutAll.map.sh", 
40.           d=outdir, p=protein, r=maxrounds,  

          s=nsim, t=startTemp, u=tempUpdate>; 
41.   SecSeq secseq[] <simple_mapper; prefix =  

     @strcat(outdir, "/", protein, "/", protein, 
42.              ".ST", st, ".TU", tu, "."), 
43.      suffix=".secseq">; 
44.   boolean converged[]; 
45.   external done[]; 
46.   secseq[0] = cpSecSeq(oopsin.secseq); 
47.  
48.   iterate i { 
49.     (done[i], result[i]) =  

      singleRound(protein, oopsin, secseq[i],  
50.                   i, nsim, startTemp, tempUpdate); 
51.     (converged[i], secseq[i+1]) =       

      analyzeRoundDir(protein, i, secseq[i],        
      done[i]); 

52.   } until ( converged[i] || (i==(maxrounds-1)) ); 
53. } 

 
We can now provide the main program, in which we call may ItFix 
directly, to predict the structure of a single protein, or alternatively 
build up more complex programs. For example, the following 
program runs each of a set of protein sequences (from file plist), in 
up to maxrounds rounds:  
54. main_loop() 
55. { 
56.   int nsim = @toint(@arg("nsim"), 3); 
57.   int maxrounds = @toint(@arg("maxrounds", "3")); 
58.   string protein[] = readData(@arg("plist")); 
59.   foreach prot in protein { 
60.     ItFix(prot, nsim, maxrounds,"",""); 
61.   } 
62. } 
 

 
Thus, the simple code fragment in lines 54-62 above, given 10 
proteins, nsim=1000, would, in each round of up to 3 rounds of 
prediction, execute 10 x 1000 = 10,000 simulations. The actual 
degree of parallelism is controlled by swift runtime settings and by 
the availability of processor resources.  

5 EXPERIENCE ON LARGE SYSTEMS  
As the main work of our group is algorithm and method 
development, we are continually testing and evaluating the 
accuracy, spatial, and time performance of new codes. The OOPS 
code base is constantly evolving. Prior to deployment of our parallel 
scripting methods, it was virtually impossible to continually test 
evolving changes at scale. The methods described here make a new 
approach possible. 

We are already using this framework to test some improvements to 
the ItFix algorithm. In this section we show some examples of what 
you can do in short main programs, once the core library routines 
above have been created and validated. 
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5.1 Usage rates 
In the first two weeks of April 2009, just shortly after the ItFix 
Swift script was developed, the system has seen impressive use in 
pursuit of scientific inquiries by author Hocky: 

ALCF Intrepid Blue Gene/P: 

   67178 jobs, 208,763 CPU hours  

TeraGrid: 

   22495 jobs, 2397 CPU hours 

Ranger: 

   17488 jobs, 1425 CPU hours 

Over 100 GB of compressed science results data was produced from 
the Blue Gene runs alone. 

5.2 Parameter sweeps 
Given the library of Swift procedures defined above, the 
programmer can use flexible scripts to leverage many processors 
with relative ease, as in the following code. 
 
int nsim      = @toint(@arg("nsim"), 3); 
int maxrounds = @toint(@arg("maxrounds", "3")); 
string protein[]    = readData(@arg("plist")); 
string startT[] = readData(@arg("startT")); 
string tUpdate[] = readData(@arg("tUpdate")); 
 
foreach prot in protein { 
  foreach sT in startT { 
    foreach tUp in tUpdate { 
      ItFix(prot, nsim, maxrounds, sT, tUp); 
    } 
  } 
} 

 
This simple code fragment, given 10 proteins, nsim=1000, two 
starting temperatures and 5 update intervals, would, in each round 
of up to 3 rounds of prediction, execute 10 x 1000 x 2 x 5 = 100,000 
simulations. On highly parallel systems such as the Argonne 
Intrepid BGP, this simple code fragment can fully utilize a 
substantial portion of the machine’s 163,840 processor cores. 
Similar code with a slightly more general parameterization of ItFix 
can sweep across any combination of settable parameters that 
govern the OOPS MCSA algorithm.  

5.3 Data analysis and visualization 
We have integrated a range of visualization tools (e.g., PyMol for 
protein visualization; scatter plots of protein energy level vs. the 
root-mean-square distance (RMSD) of backbone atoms of the 
predicted structure to the known structure) into the framework via 
simple analysis scripts. These visualizations are a primary tool used 
by our labs to assess prediction quality. Analysis in the current 
script is accomplished by collectively summarizing round results 
from log files, generating diagnostic 2D secondary structure 
predictions, and calculating the lowest RMSD and predicted 3D 
models. Quantitative molecular accuracy results and molecular 
visualization are also produced in a web-based format (Figure 7).  

5.4 OOPS Experiments conducted in Swift 
As mentioned, the ItFix algorithm has several free parameters. Each 
individual folding simulation is a Monte Carlo Simulated Annealing 
(MCSA) procedure, meaning that the simulation is started at a 

Starting Temperature (ST) and after a Temperature Update Interval 
(TUI) the temperature is decreased based on a temperature 
scheduling algorithm [10]. The idea is to have a simulation that 
drives a molecule its lowest energy state, which in the case of 
proteins we call the native state. This occurs because in the MCSA 
loop, a structure is accepted only if it has a lower energy then the 
previous, or if it has a higher energy, on with a conditional 
probability decreasing with temperature.  

We use a statistical scoring function as our measure of energy, and 
because our temperature units are arbitrary it is difficult to 
determine what values of ST and TUI will give the desired results. 
While the ItFix procedure as implemented in Debartolo et al. [13] is 
highly successful, the ST and TUI parameter space were not 
explored extensively. We wanted to know for that particular 
implementation, and for future implementations of ItFix, whether 
other combinations of these parameters can give comparable or 
better results while using less computer time.  

Since we already had a flexible Swift framework implemented for 
running OOPS across multiple sites, it was simple to implement a 
parameter sweep workflow that explores this space and which 
leverages HPC resources to do so. This parameter sweep is 
essentially the program provided in Section 5.1. Figure 5 describes 
our use of HPC and results. 

 

Figure 4 – The outputs of an initial test run on Intrepid are shown 
here for four representative proteins. Note that the protein’s native 
secondary structure was used as input, so a direct comparison to 
DeBartolo et al. is only relevant for α-proteins, where ItFix 
effectively converges to the native secondary structure.  

 

5.4.1 Initial test 
In order to evaluate the performance of the ItFix algorithm, we 
chose proteins whose structures are well determined experimentally, 
and give as input to the ItFix algorithm the native secondary 
structure in addition to the amino acid sequence. In the method of 
DeBartolo et al., to generate predictions for publication, the ST was 
100 and the TUI was 1000 and 2000 simulations were run for each 
protein. In our initial test, we ran short simulations on Argonne’s 
BG/P (Intrepid). For four proteins, we ran 150 simulations each of 
ST of 15 and 25 and TUI of 25, 50, and 100 (see Figure 4).  

The results presented immediate information for further 
investigation. The four proteins we picked were representative, two 
contained only the α-helical secondary structure unit, and two 
contained both α and β motifs. For the α/β proteins the results were 
predictably bad. We knew from experience that a large amount of 
sampling must be done to get properly aligned β structures. 
However, the results for α proteins were surprising. For all TUI ad 
ST combinations and in just 150 simulations, the results were 
nearly comparable to those published by DeBartolo et al., while 
using two orders of magnitude less simulation. The obvious 
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conclusion was that once a protein is assigned as α by the ItFix 
algorithm, we should consider running many short simulations 
rather than fewer long simulations. Two questions then remained: 
(a) can we use this method to generate predictions of higher 
accuracy than DeBartolo et al. with this method, and (b) what 
should we do about α/β and β proteins? 

5.4.2 Investigation of α proteins 
Because we were running short simulations, this investigation was 
particularly fruitful. We used a mixture of Teragrid sites for these 
tests (Abe, QueenBee, and Ranger), where simulations all took 2-10 
minutes. The results in this test were strong. Running approximately 
5000 simulations for each of three alpha proteins resulted in results 
comparable or better than those of DeBartolo et al. Additionally, for 
each protein the CPU time utilized was approximately 500 CPU-
hours while that used in the ItFix protocol would take more than 
2000 CPU-hours depending on system load, etc.  

 
Figure 5 -- Table presenting results of running > 5000 

simulations on alpha proteins using TeraGrid resources. The 
structures generated are better than those of DeBartolo et al. [13], 
and required significantly less computation. The lower images are 
the predicted structures (with helices in red and coil in green) 
overlaid with the native structures (colored orange).  
 

5.4.3 Investigation of β proteins 
Parameter sweep simulations for β proteins demonstrated the 
anecdotal evidence described above; it is necessary to do a large 
amount of in-simulation sampling in addition to many parallel 
MCSA runs to generate a good ensemble of structure for β or α/β 
targets. Since this was the case, we then decided to investigate the 
performance of Intrepid with our simulation framework for use in 
future folding investigations where large amounts of sampling are 
necessary. 

5.4.4 Replicate/compare DeBartolo et al. runs  
In previous sections, we used our scripting framework to investigate 
properties of ItFix. Another thing we wish to learn is what resources 
will be useful for which kinds of future applications. One thing we 
would like to know is whether a resource such as a BG/P with many 
low-power processors can be useful for our types of studies. In 
Figure 6 we show that an ItFix investigation can be successfully and 
stably executed with Swift/Falkon. Though the runtimes are longer 
than would be expected on stock processors, the availability of 
thousands of processors and the stability of our system shows that 
use of Intrepid can be fruitful in future investigations. After this 
simulation we also successfully ran simulations with the exact 

protocol of DeBartolo et al. for T1mky and T1tif, results of which 
can be seen on our project web site [2]. 

 
Figure 6 – Results of running eight proteins on 2 racks (8192 

CPUS) on Argonne’s BG/P, Intrepid. Below are results from this 
investigation for T1af7. On the left is a scatter plot showing the 
correlation between our statistical energy potential and accuracy of 
the protein structures for the 985 simulations that ran to 
completion. On the right is an image showing the lowest RMSD 
structure. This table, plot and image were all automatically 
generated by our scripting mechanism, and the table is presented 
by a simple CGI script at our web site [2]. 
 

5.4.5 Automatic Timing Runs  
To effectively utilize computational resources for Monte Carlo 
simulations, it is important to know how your algorithm scales 
with the amount of sampling that you wish to have done. With this 
framework, we can easily run loops over various parameters and 
test the scaling of our algorithm. We performed a simple test on the 
TeraGrid site Ranger, using three different ST values (25,50,100) 
and 4 different TUIs (50,100,200,500). A sample output can be 
seen in Figure 7. 
 

 
Figure 7 – Sample result of a timing run on Ranger for varying 
values of Temperature Update Interval with Starting Temperature 
of 100. 
 

6 RELATED WORK 
We discuss related work in both protein structure prediction and 
computing. 
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6.1 Structure prediction approach 
Most folding algorithms rely heavily on known structures or 
fragments (homology- or template-based) and can be extremely 
successful [8, 31]. Their success, however, rapidly decreases as the 
amount of known information decreases [26]. Other methods take a 
physics-based approach [22], but are limited in their ability to 
predict large targets on short time scales. 

Uniquely among known approaches to structure prediction, OOPS 
operates with minimal use of information derived from sequence 
similarity to proteins in the Protein Data Bank (PDB) [7]. OOPS 
derives its speed and accuracy from the use of a “Cβ” model [10], 
an accurate statistical potential [16], and a search strategy involving 
iterative fixing of structure in multiple “rounds” of folding [13]. 
Since OOPS uses minimal homology information and a reduced 
representation, its success depends crucially on describing the 
protein physics correctly. Great effort has been devoted to the 
energy function, e.g., interactions are conditional on backbone 
geometry and the relative orientation of side chains. In 2007, its 
accuracy exceeded available all-atom potentials [16] by utilizing 
secondary structure dependence, and it has been significantly 
improved since then by including orientation-dependence [13]. Its 
homology-free secondary and tertiary structure predictions for small 
proteins rival or exceed homology-based methods with (expensive) 
explicit side chains, engendering optimism for continued progress. 
It also employs sequence homology for additional accuracy when 
appropriate. 

Our algorithm can predict the structures of two sets of proteins with 
comparable accuracy for α, α/β, and β proteins (DeBartolo et. al , 
[13] Table 2). These predictions are comparable in accuracy to the 
successful Rosetta fragment-based insertion algorithm, described in 
the papers from which the test sets are obtained [8, 19]. 

6.2 Computing approach  
Our computing approach builds on two related layers: the Swift 
parallel scripting system, and two-level scheduling, as implemented 
in Falkon and via the Swift “coaster” mechanism.  

Other approaches to high-level specification of loosely coupled 
scientific computations include MapReduce, DAGMan, Pegasus, 
BPEL,Taverna. Triana, Kepler, and Karajan. 

MapReduce [12] supports the processing of key-value based data, 
using the Google File System. Swift targets various scientific 
applications that process heterogeneous data formats, and can 
schedule computations in a location-independent way. 

Pegasus [15] and DAGMan [4] can also schedule large scale 
computations in Grid environments. DAGMan provides a workflow 
engine that manages Condor jobs organized as directed acyclic 
graphs (DAGs) in which each edge corresponds to an explicit task 
precedence. It has no knowledge of data flow, and in distributed 
environments works best with a higher-level, data-cognizant layer. 
DAGMan also lacks dynamic features such as iteration (which can 
result in large DAGs) and conditional execution. Pegasus is 
primarily a set of DAG transformers that can translate a workflow 
graph into a location-specific DAGMan input file; prune tasks for 
files that exist; select sites for jobs; and cluster jobs based on 
various criteria. A weakness is that planners must operate on an 
entire workflow statically, and execution sites cannot be changed 
after Pegasus processes a workflow, which can be long before a job 
runs, a strategy that may not work well in dynamic environments. 

BPEL [1] has primarily been applied in service composition and 
orchestration. A lack of support for iteration means that programs 
can be larger, although the problem is being addressed in its latest 
2.0 specification. In addition, the complex XML specification is 
cumbersome to write compared with our compact scripting 
language. 

Taverna [21], Triana [27], and Kepler [5] have also been applied in 
science problems. However, they do not abstract dataset types or 
provide location transparency. Data movement and Grid job 
submission all need to be explicitly specified and organized. Their 
support for multi-site Grid execution is also of limited scale. 

As discussed earlier, Swift integrates Karajan [18]. Karajan 
provides the libraries and primitives for job scheduling, data 
transfer, and Grid job submission; Swift adds support for high-level 
abstract specification of large parallel computations, data 
abstraction, and workflow restart, and also (via Falkon) fast, reliable 
execution over multiple Grid sites. 

Work related to Swift’s use of Falkon and coasters for lightweight 
scheduling includes IBM’s Kittyhawk project [6], Cope et al.’s 
work [11] on integrating lightweight scheduling in the Cobalt 
scheduling system, using the HTC-mode support in Cobalt. We 
have compared the performance of Falkon on the Blue Gene/P with 
those of Cope at al. and Peters et al. [23], and found at least one 
order of magnitude better performance, and several orders of 
magnitude better scalability. This improved performance and 
scalability of the middleware can translate into direct improvements 
in scalability and performance for applications, with finer grained 
task parallelism and reduced end-to-end application execution 
times. 

7 FUTURE WORK 
The work described here has come together over a fairly short 
period in Feb-April 2009. Its success has enabled us to chart the 
following enhancements, which our experience to date suggests are 
readily achievable. 

While it was straightforward to code ItFix in Swift, the language 
and its runtime semantics are still young and evolving. We were 
eager to learn more about the language’s completeness and usability 
through the experience of the kinds of real production usage as this 
project. Three aspects of language enhancement seem desirable 
from our OOPS scripting experience: 1) the need for polymorphism, 
so a superset data structure can receive the results of several similar 
but non-identical application program signatures; 2) the desirability 
of providing global variables so that, for example, all functions can 
be aware of application command line variables; and 3) an 
alternative to the Swift construct called “external” variables, used to 
circumvent the systems inability to pass a very long list of data 
objects as a command line argument. All of these are now being 
considered for near-term enhancements to the language. 

Scaling through hybrid parallelization. To improve the scaling of 
OOPS on systems such as the BG/P, with massive numbers of low-
speed processors, we will turn OOPS into a hybrid HPC/MTC 
application—what we may term “MPTC,” for many parallel-task 
computing—by parallelizing the MCSA energy-computing 
function, in which profiling has shown that over 85% of the time in 
OOPS is spent. We have designed a data structuring approach that 
will make this straightforward, opening the door to much greater 
scaling by using up to 1024 cores for a single MCSA prediction 
operation. 



Revision 27: 6/16/09 4:26 PM 

We can thus estimate the speeds we expect to achieve on our target 
petascale platforms. Folding 10 proteins with a fold size of 10 
rounds and a round size of 1,000 MCSA simulations can utilize 
100,000 CPUs working in parallel with no data dependencies and 
hence near-perfect scaling. If we devote between 4 and 16 cores to 
each Mcsa() function for the parallel computation of the energy of 
each configuration, we can effectively utilize 40,000 to 160,000 
compute cores for this task, or 4,000 to 16,000 cores per protein. 
Realistically, even on petascale systems with 50K to 300K cores, 
most user jobs will run with allocations far less than the full system. 
Thus, this scale fits well for today’s usage, and can expand to 
greater utilization, even for single proteins, as the parallelization of 
the energy computation increases. 

Many-task data management. Loosely coupled parallel scripting, 
while productive for the developer, imposes a high performance 
burden on large scale systems. We address this issue with a 
collective I/O model for file-based many-task computing [28] that 
we have prototyped on the BG/P and which enables efficient 
distribution of input data files to computing nodes and gathering of 
output results from them. This approach broadcasts common input 
data, and uses efficient scatter/gather and caching techniques for 
input and output. 

Comprehensive user environment. An OOPS “run configurator” 
mechanism packaged for use both from a web-form-based interface 
as well as via a simple textual command specification will enable 
users to specify OOPS runs with no programming. The web 
interface will be runable locally by any user or community as a 
service of the OOPS workflow framework. 

The collaboration environment will leverage the Computation 
Institute’s Petascale Active Data Server (PADS): a 0.5PB storage 
system integrated with a 384-node cluster, with another 0.3PB of 
storage and ample RAM on the cluster nodes (NSF grant OCI-
0821678). This facility will be ideal for “stage-2” analysis (where 
stage-1 analysis is done on the target petascale systems themselves 
as part of the OOPS workflow, as described above). 

 

Tools such as R, Octave, and MatLab can be readily integrated into 
analysis scripts (as many Swift users do today). Such analysis 
scripts can utilize the same parallel scripting language as the OOPS 
run-time framework, and can run both on the target petascale 
systems as well as the backend “stage-2 analysis” environments 
such as PADS, clusters, and workstations. 

8 CONCLUSION 
We have described the recent, rapid success in recoding an ad-hoc 
implementation of protein structure prediction by “iterative fixing” 
and simulated annealing in the Swift parallel scripting language, 
and report on the progress, benfits, and remaining work needed to 
make this approach an even more highly-productive example of 
utilizing petascale systems to achieve greater scientific insights into 
important aspects of the structural and behavioral properties of large 
biomolecules.  

We have identified remaining deficiencies in this approach and 
presented a plan for future work that addresses them. 

In general, we believe our work shows, in part, the unsurprising 
conclusion that easier access to a greater level of computing 
resources means a larger lab in which to test more hypotheses, in 
less time, with less effort, and thus few distractions for scientists 
seeking to advance their science rather than to address the 
complexities of computing at this scale. 

We believe our work demonstrates that once a basic set of 
procedures have been created, the Swift approach to parallel 
scripting can be productive; what we find most exciting is that 
short, compact concise scripts, which clearly show the science 
logic, can be automatically executed across diverse resource types, 
and can leverage large computational resources. Thus, we run much 
larger problems, and explore a large scientific space. It allows us to 
ask questions we could not ask before. 

Another advantages of our script-based approach is that we have the 
future benefit of automated data provenance tracking [9, 30] within 
the workflow execution engine, as well as the ability to leverage 
multiple petascale execution resources within a single computation. 

From our experience with the system to date, we believe that the 
new capability will accelerate the rate of discovery in the Freed and 
Sosnick labs, by increasing the rate at which we can improve the 
speed and accuracy of OOPS. A core science process in these labs is 
the enhancement in terms of predictive accuracy, speed, and 
functional capability of the Open Protein Simulator. Enabling many 
more lab members to perform more simulations, with larger Monte 
Carlo sample sets, and to easily test and compare the performance 
of the system across a range of parameter values, has proven its 
value already in terms of new insights into the behavior of our 
algorithms and the degree of simulation needed to converge on 
accurate predictions. 
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